
LA-UR-15-27730
Approved for public release; distribution is unlimited.

Title: Summer 2015 LANL Exit Talk

Author(s): Usher, Will
Canada, Curtis Vincent

Intended for: Web

Issued: 2015-10-05

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Summer 2015 LANL Exit Talk
Will Usher

Summer Work
Worked on writing the OpenMP backend and making general performance

improvements and comparisions in VTK-m

Performance Measurement and Improvement

Added a benchmarking suite to VTK-m to compare backends and changes

to backends

Migrated the default storage type to use an aligned allocator to improve

CPU and MIC performance

OpenMP Backend

Ported Jeff Inman's hand-vectorized MIC scan to a generic version in

VTK-m, achieving somewhat comparable performance

Working on implementing a parallel quick sort for the backend as well,

but still some work left to do

Along with some general development work, bug fixes, etc.

VTK-m
VTK-m is a toolkit of visualization algorithms for existing and emerging

processor architectures: multi-core CPUs, GPUs, Xeon Phi, ...

Provides abstract models for data and execution that can be efficiently

implemented in parallel across many architectures and used to implement

performant visualization algorithms

Lower/Upper Bounds: Find first/last index each element can be inserted

into a sorted array without changing order

Reduce, ReduceByKey: Compute an accumulated operation on the data

Sort, SortByKey

Scan Inclusive/Exclusive: Inclusive/exclusive prefix sum

StreamCompact: Remove unwanted elements based on some stencil or

predicate

Unique: Remove adjacent duplicate values in an array

Schedule: Run instances of a user provided functor on concurrent threads

Benchmarking VTK-m
Main task for the summer was to start writing an OpenMP backend for VTK-m

and work on general performance improvements. To measure performance of

the backend relative to others and itself between changes we need a way to

benchmark the backend

Based on the design of Rust's benchmarking: Take a functor, run it a bunch of

times to collect statistics, perform some outlier limiting and report a summary

of run times, eg. median, mean, std dev, etc.

User provides a functor that will run the benchmark and return the time what

they're interested in took, allowing them to perform per-benchmark setup

without including this time in the benchmark time

Benchmarking: Running On Many Types
Some extra (semi-hacky) functionality is included to run benchmark functors

on various types by templating the functor on the type being run on, allowing

for one-time initialization within the benchmark's constructor

template<typename DeviceAdapterTag>
struct SampleBenchmarker {

typedef vtkm::cont::Timer<DeviceAdapterTag> Timer;
template<typename Value>
struct BenchHelloWorld {

 vtkm::Float64 operator()(){
 Timer timer;

std::cout << "Hello world\n";
return timer.GetElapsedTime();

 }
std::string Description() const {

return "BenchHelloWorld";
 }
 };
 VTKM_MAKE_BENCHMARK(HelloWorld, BenchHelloWorld);

// Run in some function (eg. main) with:
// VTKM_RUN_BENCHMARK(HelloWorld,
// vtkm::ListTagBase<vtkm::Int32, vtkm::Float32>());

};

Benchmarking: Flexibility
If your benchmark doesn't need to run on a bunch of different types you can

use the Benchmarker directly to benchmark your functor

struct HelloWorld {
const std::string msg;
// Do some one-time setup for the 'benchmark'

 HelloWorld() : msg("Hello world!\n"){}

 vtkm::Float64 operator()(){
 Timer timer;

std::cout << msg;
return timer.GetElapsedTime();

 }
std::string Description() const {

return "HelloWorld";
 }
};

int main(int, char**){
 Benchmarker bencher;
 bencher(HelloWorld());

return 0;
};

VTK-m OpenMP Backend
VTK-m provides a set of parallel algorithms that are used to implement

various visualization algorithms, allowing a common set of heavily used

operations to be specialized and tuned for various architectures instead of

re-writing every visualization algorithm for every architecture

A generic backend is also provided which allows for new backends to be

created very easily, the generic backend will use the specialized backend's

Schedule and Synchronize methods to implement all other algorithms

(although providing more specializations can improve performance quite a

bit, eg. of scan and sort)

A backend specialization must also provide a specialization of

ArrayManagerExecution to transfer data to/from the device

The OpenMP backend shares memory with the host (control) and

execution environments so we specialize

ArrayManagerExecutionShareWithControl

VTK-m OpenMP Backend: Schedule
Scheduling a user functor in parallel with OpenMP is pretty straightforward,

the backend simply executes a parallel for

// Within the specialization of DeviceAdapterAlgorithm for OpenMP
template<class Functor>
VTKM_CONT_EXPORT static void Schedule(Functor functor, vtkm::Id numInstances){

// Some error handling code goes here, removed for brevity
const ScheduleKernel<Functor> kernel(functor);

#pragma omp parallel for schedule(guided, GRAIN_SIZE)
for(vtkm::Id i = 0; i < numInstances; ++i){

 kernel(i);
 }
}

The specialization of the 3D schedule method is similar

The OpenMP backend follows a fork-join execution model so no asynchronous

computation is left running after returning from a method, making

Synchronize trivial

VTK-m OpenMP Backend: Scan Inclusive
Scan inclusive/exclusive are used to implement many of the algorithms in the

general device adapter, providing a faster specialization can help improve

performance of a lot of methods making it a good first target for optimization

Started with a hand-vectorized tile based exclusive +scan for Xeon Phi by Jeff

Inman to migrate, a few challenges

No Intrinsics

Our method must be generic on the type being operated on and the

operation being performed and should run across all CPU architectures

along with KNC and KNL

Need to work with the compiler to get the code we want generated, Jeff's

version makes heavy use of permute intrinsics to shuffle elements

in-register, how can we get similar behavior?

No Assumptions on Operators

The specialized version makes assumptions about the identity value of the

operator (eg. for addition identity is 0), we don't know what operator is

being applied

VTK-m OpenMP Backend: Scan Inclusive
Need to generate fast code from templated functions and operators, must

understand compiler's limitations when generating code

If the compiler naively vectorizes this loop of the upward pass of a tree scan it

generates gathers and scatters to handle the non-linear memory accesses of

the inner loop, resulting in poor performance

vtkm::Id stride;
for (stride = 2; stride - 1 < VectorSize; stride *= 2){

const vtkm::Id scan_offset = stride / 2 - 1;
const vtkm::Id scan_distance = stride / 2;
for (vtkm::Id i = 0; i < VectorSize / stride; ++i){

const vtkm::Id left = scan_offset + i * stride;
const vtkm::Id right = left + scan_distance;
if (right < VectorSize){

vector[right] = BinaryOperator(vector[left], vector[right]);
 }
 }
}

VTK-m OpenMP Backend: Scan Inclusive
Instead we'll take advantage of loop unrolling and fully unroll a 16-element

tree scan, similar to the intrinsics version with permutes but instead perform

generic operations

// Unrolled version of first iteration of the outer loop
vector[1] = BinaryOperator(vector[0], vector[1]);
vector[3] = BinaryOperator(vector[2], vector[3]);
vector[5] = BinaryOperator(vector[4], vector[5]);
vector[7] = BinaryOperator(vector[6], vector[7]);
vector[9] = BinaryOperator(vector[8], vector[9]);
vector[11] = BinaryOperator(vector[10], vector[11]);
vector[13] = BinaryOperator(vector[12], vector[13]);
vector[15] = BinaryOperator(vector[14], vector[15]);

Get further gains by special casing loads where we have 16 valid elements and

unrolling this with a #pragma unroll, letting us handle arrays that aren't

multiples of 16 long while keeping the unrolled 16 element scan

VTK-m OpenMP Backend: Scan Inclusive
Performance is ok on CPU however on Xeon Phi Intel's TBB scan is

significantly faster. My current thoughts are that poor work distribution and

threading overhead are holding our performance back

VTK-m OpenMP Backend: Scan Inclusive

VTK-m OpenMP Backend: Sort (preliminary)
Recently (past few days) implemented a parallel quicksort for the OpenMP

backend's specialization of Sort (still some bugs to sort out)

Intel TBB's parallel sort is also a parallel quicksort so I'd expect at least

comparable performance

Miscellaneous Performance: Alignment
Aligning data to cache line boundaries can provide a decent bump, as it helps:

Reduce cache misses and flushes

Reduce number of bus transactions to read data

Reduce false sharing

Reduce unaligned loads into vector registers, aiding vectorization

Switching to aligned allocation isn't too difficult, each platform provides an

aligned allocation function

Any POSIX: posix_memalign
WIN32: _aligned_alloc
CPUs with SSE: _mm_malloc (useful as a fallback if you can't identify the

platform)

Added an aligned std::allocator which is used by VTK-m's default storage

type and can be used with STL containers so users can pass aligned memory

to VTK-m

Small boost on OpenMP scan inclusive on MIC, gain ~0.01s (~12.5%) for scan

on 228 int's

Questions?

Creating a VTK-m Backend

What's Needed for a New Backend
Create a directory under vtkm/cont/ for your backend. The implementation

will go in internal/ and a header to include your backend will be placed

under vtkm/cont/backend

You'll need to provide specializations of:

ArrayManagerExecution (or ArrayManagerExecutionShareWithControl if

control and execution environments share memory)

DeviceAdapterAlgorithmGeneral, you only need to provide specializations

for both Schedule methods and Synchronize

Additionally you'll make use of the VTKM_CREATE_DEVICE_ADAPTER macro to

create the adapter tag

After this we'll need to add our backend into CMake, the test and benchmark

suites and into some header files

Structure of a Backend
vtkm/cont/
 tbb/
 cuda/
 demo/
 DeviceAdapterDemo.h
 internal/
 DeviceAdapterAlgorithmDemo.h
 ArrayManagerExecutionDemo.h
 DeviceAdapterTagDemo.h
 ... (anything else you need)
 testing/
 More on testing shortly

DeviceAdapterAlgorithmDemo.h: Specialization of

DeviceAdapterAlgorithmGeneral

DeviceAdapterTagDemo.h: Use VTKM_CREATE_DEVICE_ADAPTER(Demo) macro

to generate a tag for your adapter

ArrayManagerExecutionDemo.h: Specialize an array manager for passing

data to/from the execution environment

DeviceAdapterDemo.h: Include the headers from internal/

Creating a Device Adapter Tag
The device adapter tag is used to pick the right template specializations to run

on your backend

Creating one is done using the VTKM_CREATE_DEVICE_ADAPTER macro

File: DeviceAdapterTagDemo.h

#ifndef vtk_m_cont_demo_internal_DeviceAdapterTagDemo_h
#define vtk_m_cont_demo_internal_DeviceAdapterTagDemo_h
#include <vtkm/cont/internal/DeviceAdapterTag.h>

VTKM_CREATE_DEVICE_ADAPTER(Demo);

#endif

Providing a Device Adapter Algorithm
Specialize DeviceAdapterAlgorithmGeneral for your specific backend in

DeviceAdapterAlgorithmDemo

It must provide at least both Schedule methods and Synchronize, however

providing tuned specializations for other methods can improve performance

(eg Sort, ScanInclusive)

File: DeviceAdapterAlgorithmDemo.h

// Include guards + lots of includes here, see existing backends for examples
// or the source for this demo
namespace vtkm {
namespace cont {
template<>
struct DeviceAdapterAlgorithm<vtkm::cont::DeviceAdapterTagDemo> :
 vtkm::cont::internal::DeviceAdapterAlgorithmGeneral<
 DeviceAdapterAlgorithm<vtkm::cont::DeviceAdapterTagDemo>,
 vtkm::cont::DeviceAdapterTagDemo>
{
 ...
};

Specializing Schedule for 1D Workloads
The device adapter must provide specializations for scheduling 1D and 3D

workloads

Scheduling a 1D workload:

template<class Functor>
VTKM_CONT_EXPORT static void Schedule(Functor functor, vtkm::Id numInstances){

// For error handling
const vtkm::Id MESSAGE_SIZE = 1024;
char errorString[MESSAGE_SIZE];

 errorString[0] = '\0';
 vtkm::exec::internal::ErrorMessageBuffer

errorMessage(errorString, MESSAGE_SIZE);
// Schedule the functor
for (vtkm::Id i = 0; i < numInstances; ++i){

 functor(i);
 }

// Check if something went wrong in the functor
if (errorMessage.IsErrorRaised()){

throw vtkm::cont::ErrorExecution(errorString);
 }
}

Specializing Schedule for 3D Workloads
template<class Functor>
VTKM_CONT_EXPORT static void Schedule(Functor functor, vtkm::Id3 rangeMax){

// For error handling
const vtkm::Id MESSAGE_SIZE = 1024;
char errorString[MESSAGE_SIZE];

 errorString[0] = '\0';
 vtkm::exec::internal::ErrorMessageBuffer

errorMessage(errorString, MESSAGE_SIZE);
// Schedule the functor
for (vtkm::Id i = 0; i < rangeMax[0] * rangeMax[1] * rangeMax[2]; ++i){

 functor(i);
 }

// Check if something went wrong in the functor
if (errorMessage.IsErrorRaised()){

throw vtkm::cont::ErrorExecution(errorString);
 }
}

Specializing Synchronize
Synchronize should synchronize the control and execution environments of

your backend, eg. wait for any running asynchronous computations to finish

Our demo backend is serial so there's not much to be done here

VTKM_CONT_EXPORT static void Synchronize(){}

Providing an Array Manager
Your ArrayManagerExecution* will manage moving data between the

execution and control environments

If your execution and control share memory (eg. both on CPU) check the Serial

and TBB backends for examples

If they don't share memory (eg. run on GPU or MIC offload) check the CUDA

backend for an example

This will be placed in: ArrayManagerExecutionDemo.h

Providing an Array Manager
Our demo backend is just on the CPU so we can base ours on the Serial

backend's array manager

// Include guards + includes, etc..
namespace vtkm {
namespace cont {
namespace internal {
template<typename T, class StorageTag>
class ArrayManagerExecution<T, StorageTag, vtkm::cont::DeviceAdapterTagDemo>
 : public vtkm::cont::internal::ArrayManagerExecutionShareWithControl
 <T, StorageTag>
{
public:

typedef vtkm::cont::internal::ArrayManagerExecutionShareWithControl
 <T, StorageTag> Superclass;

typedef typename Superclass::ValueType ValueType;
typedef typename Superclass::PortalType PortalType;
typedef typename Superclass::PortalConstType PortalConstType;

VTKM_CONT_EXPORT
ArrayManagerExecution(typename Superclass:StorageType *storage)

 : Superclass(storage){}
};
}
}
}

Providing a Device Adapter Header
The header DeviceAdapterDemo.h just includes your internal headers and is

placed in vtkm/cont/demo/

#ifndef vtk_m_cont_demo_DeviceAdapterDemo_h
#define vtk_m_cont_demo_DeviceAdapterDemo_h

#include <vtkm/cont/demo/internal/DeviceAdapterAlgorithmDemo.h>
#include <vtkm/cont/demo/internal/ArrayManagerExecutionDemo.h>
#include <vtkm/cont/demo/internal/DeviceAdapterTagDemo.h>

#endif

Telling VTK-m About Your Backend: CMake
We need to add our backend to CMake and add some conditional includes to

get our backend code included in the build

We'll start by adding a CMake option to build our backend. In the main

CMakeLists.txt we'll add:

After the CUDA and TBB backend options
option(VTKm_ENABLE_DEMO "Enable the demo backend" OFF)

Add us to vtkm/cont/CMakeLists.txt as well

After the if (VTKm_ENABLE_TBB) and CUDA conditions
if (VTKm_ENABLE_DEMO)
 add_subdirectory(demo)
endif()

Telling VTK-m About Your Backend: CMake
Optional: If your backend needs to add compilation flags or find some

dependencies you can add a script in the CMake folder named

UseVTKm<backend>.cmake, so here we'll have one that does nothing:

CMake/UseVTKmDemo.cmake:

if (VTKm_Demo_initialize_complete)
 return()
endif (VTKm_Demo_initialize_complete)

Find any required libraries
if (NOT VTKm_Demo_FOUND)
 set(VTKm_Demo_FOUND TRUE)
endif (NOT VTKm_Demo_FOUND)

Setup any dependent packages and compilation flags
if (VTKm_Demo_FOUND)
 set(VTKm_Demo_initialize_complete TRUE)
endif (VTKm_Demo_FOUND)

Telling VTK-m About Your Backend: CMake
Optional: To have CMake run our setup script from the previous slide we'll

add a call to vtkm_configure_device in the main CMakeLists.txt file beneath the

'Set up devices selected' comment.

After the if (VTKm_ENABLE_TBB) and CUDA conditions
if (VTKm_ENABLE_DEMO)
 vtkm_configure_device(Demo)
endif()

Telling VTK-m About Your Backend: CMake
Now we define CMake files to build our backend

In vtkm/cont/demo/CMakeLists.txt:

set(headers DeviceAdapterDemo.h)
add_subdirectory(internal)
vtkm_declare_headers(${headers})
More on testing in a bit
add_subdirectory(testing)

In vtkm/cont/demo/internal/CMakeLists.txt:

set(headers
 DeviceAdapterAlgorithmDemo.h
 DeviceAdapterTagDemo.h
 ArrayManagerExecutionDemo.h
)
vtkm_declare_headers(${headers})

Telling VTK-m About Your Backend
vtkm/cont/internal/DeviceAdapterAlgorithm.h:

// At the bottom of the file with the other backend conditional includes add:
#elif VTKM_DEVICE_ADAPTER == VTKM_DEVICE_ADAPTER_DEMO
#include <vtkm/cont/demo/internal/DeviceAdapterAlgorithmDemo.h>
#endif

vtkm/cont/internal/ArrayManagerExecution.h:

// At the bottom of the file with the other backend conditional includes add:
#elif VTKM_DEVICE_ADAPTER == VTKM_DEVICE_ADAPTER_DEMO
#include <vtkm/cont/demo/internal/ArrayManagerExecutionDemo.h>
#endif

vtkm/cont/internal/DeviceAdapterTag.h:

// At the bottom of the file with the other backend conditional above the
// ADAPTER_ERROR tag add:
#elif VTKM_DEVICE_ADAPTER == VTKM_DEVICE_ADAPTER_DEMO
#include <vtkm/cont/demo/internal/DeviceAdapterTagDemo.h>
#define VTKM_DEFAULT_DEVICE_ADAPTER_TAG ::vtkm::cont::DeviceAdapterTagDemo

Testing Your Backend
VTK-m should now recognize and make available your backend, so now we'd

like to also build and run the test suite to make sure everything's ok

Under vtkm/cont/demo/testing we'll create files to run the unit tests

CMakeLists.txt for our unit tests:

set(unit_tests
 UnitTestDeviceAdapterDemo.cxx
 UnitTestDemoArrayHandle.cxx
 UnitTestDemoArrayHandleFancy.cxx
)
vtkm_unit_tests(Demo SOURCES ${unit_tests})

Device Adapter Unit Tests
Within UnitTestDeviceAdapterDemo.cxx we'll use the TestingDeviceAdapter

class to generate and run tests for our backend:

#define VTKM_DEVICE_ADAPTER VTKM_DEVICE_ADAPTER_ERROR

#include <vtkm/cont/demo/DeviceAdapterDemo.h>
#include <vtkm/cont/testing/TestingDeviceAdapter.h>

int UnitTestDeviceAdapterDemo(int, char *[]){
return vtkm::cont::testing::TestingDeviceAdapter

 <vtkm::cont::DeviceAdapterTagDemo>::Run();
}

Array Handle Unit Tests
Within UnitTestDemoArrayHandle.cxx we'll use the TestingDeviceAdapter class

to generate and run tests for our backend:

#define VTKM_DEVICE_ADAPTER VTKM_DEVICE_ADAPTER_ERROR

#include <vtkm/cont/demo/DeviceAdapterDemo.h>
#include <vtkm/cont/testing/TestingArrayHandles.h>

int UnitTestDemoArrayHandle(int, char *[]){
return vtkm::cont::testing::TestingArrayHandles

 <vtkm::cont::DeviceAdapterTagDemo>::Run();
}

Fancy Array Handle Unit Tests
Within UnitTestDemoArrayHandleFancy.cxx we'll use the TestingDeviceAdapter

class to generate and run tests for our backend:

#define VTKM_DEVICE_ADAPTER VTKM_DEVICE_ADAPTER_ERROR

#include <vtkm/cont/demo/DeviceAdapterDemo.h>
#include <vtkm/cont/testing/TestingFancyArrayHandles.h>

int UnitTestDemoArrayHandleFancy(int, char *[]){
return vtkm::cont::testing::TestingFancyArrayHandles

 <vtkm::cont::DeviceAdapterTagDemo>::Run();
}

Worklet Tests
Fortunately the worklet tests require much less effort, we just add a condition

to build them for our backend if it's enabled to vtkm/worklet/testing
/CMakeLists.txt

if (VTKm_ENABLE_DEMO)
 vtkm_worklet_unit_tests(VTKM_DEVICE_ADAPTER_Demo)
endif()

Benchmarking our Backend
Adding our backend to the micro benchmarks suite is similar to building the

worklet tests, we just add a similar condition to vtkm/benchmarking
/CMakeLists.txt

if (VTKm_ENABLE_DEMO)
 vtkm_benchmarks(VTKM_DEVICE_ADAPTER_Demo)
endif()

Building
Now we can run CMake, turn on VTKm_ENABLE_DEMO and have our new backend

built along with tests and benchmarks for it

Testing: Run tests with just make test

Benchmarking: An executable named Benchmarks_Demo will be produced, run

this and select the benchmark suite to run

An example of the Demo backend is available on Gitlab

